Geometry Honors ISLO Exam Review – Part 1

- 1. A(-3,4) and B(2,1) are given. Find the coordinates of points C and D if B is the midpoint of \overline{AC} and D is the midpoint of \overline{BC} .
- 2. Two angles are supplementary and the ratio of their measures are 3 : 7. Find the measure of both angles. What is the measure of the complement of the smaller angle?

- 6. The base angles of an isosceles triangle is 12 less than the vertex angle. Find the measures of all three angles of the triangle.
- 7. The exterior angle of a base angle of an isosceles triangle exceeds the vertex angle by 28°, what is the measure of the vertex angle ?
- 8. For each of the triangles below, find the value of x.

State the reason, if any, that the Δs at left are \cong .

- 9. BD is a median, and $\angle 3 \cong \angle 4$.
- 10. \overline{BD} is an altitude, and $\overline{AD} \cong \overline{CD}$.
- 11. $\angle 3 \cong \angle 4$, and $\angle A \cong \angle C$.
- 12. \overline{BD} bisect $\angle ADC$, \overline{BD} bisects \overline{AC} .

Т

State any additional parts needed to prove the triangles congruent by the indicated method.

18. What is the area of \triangle ABC ? _____

19. What is the area of each of the triangles below:

 $\Delta AMS = _ \Delta RST = _ \Delta RBC = _$

20. What is the perimeter of Δ RMS ? _____

21. If \overline{BC} is the X axis, and C is the origin, find the coordinates of the following points:

 $A = _$ $B = _$ $C = _(0, 0)$ $R = _$
 $T = _$ $S = _$ $M = _$

- 22. Using the diagram above, if \overline{BE} is drawn as an altitude to Δ ABC, what is the slope of \overline{BE} ?
- 23. Write the equation of the perpendicular bisector of \overline{AB} ?

Questions 24 - 27 are based on the following : A (-3,2) and B (3,5)

- 24. What is the length of \overline{AB} ?
- 25. What are the coordinates of the midpoint of \overline{AB} ?
- 26. If C is between A and B so that AC = 2 (BC), what are the coordinates of C?
- 27. If B is between A and D so that AB = 6 (BD), what are the coordinates of D?

Questions 28–35: Decide if the statement is ALWAYS, SOMETIMES or NEVER true.

- 28. If two angles are supplementary, then they form a linear pair.
- 29. If the converse of a statement is True, then the Inverse is True.
- 30. If a triangle is equilateral, then it is isosceles.
- 31. If parallel lines are cut by a transversal, then alternate exterior angles are supplementary.
- 32. If 2 lines are perpendicular to the same line, then they are parallel.
- 33. In a coordinate plane, if two lines are perpendicular, then they have opposite reciprocal slopes.
- 34. If a segment of a triangle is a median, then it is also an altitude.
- 35. If two angles are vertical angles then they are supplementary.
- 36. If a point is reflected over two parallel lines, then the resulting image is a translation

For Questions 36 – 37: Use the following conditional statement to complete:

"If an angle is bisected, then two congruent angles are formed."

36. Is the statement TRUE or FALSE ? (give a counterexample if False)

37. Write the Converse, Inverse & Contrapositive.

38.	Draw a valid conclusion:	(1) If I go to the store, then I will buy a new pair of sneakers.
		(2) If I buy a new pair of sneakers, then I will spend money.
		(3)

39. Draw a valid conclusion: (1) If I drive a car, then I have a license.

- (2) Joan does not have a license.
- (3) _____

Livingston High School

Questions 40 – 46 refer to $\triangle ABC$ whose coordinates are A(-2,5), B(-2,-1) and C(2,1).

40. Slope of \overline{BC} = _____ 41. Slope of \overline{AC} = _____

- 42. Length of median $\overline{AD} =$ _____ 43. Length of altitude $\overline{CE} =$ _____
- 44. Length of altitude $\overline{AF} =$ 45. Coordinates of point E, if \overline{CE} is a median. E = _____
- 46. If \overline{CE} and \overline{AD} meet at point G, find CG = _____

Questions 47 – 54 refer to $\triangle ABC$ with A(-2,5), B(-2,-1) and C(2,1).

Find the coordinates of A', B', and C' resulting from the following transformation:

47. $\triangle ABC$ is reflected over the y axis. A' = _____ B' = ____ and C' = _____

48. $\triangle ABC$ is reflected over line y = x. A' = _____ B' = ____ and C' = _____

49. $\triangle ABC$ is rotated 90° clockwise around the origin. A' = _____ B' = _____ and C' = _____

50. If $\triangle ABC$ is reflected around the x axis and then shifted 5 units to the right, this is an example of a

- 51. Two rays $\boldsymbol{\varkappa}$ and \boldsymbol{t} are in the first quadrant with endpoints at the origin $\boldsymbol{\varkappa}$ makes an \angle of 15° with the x-axis and \boldsymbol{t} makes an \angle of 23° with the y- axis. If \triangle ABC is reflected over ray $\boldsymbol{\varkappa}$ first, and that new triangle is then reflected over ray \boldsymbol{t} , describe in exact terms the transformation of \triangle ABC to the final triangle.
- 52. When a person looks into two parallel mirrors and looks at the back of their head, this is an example of what type of geometric transformation ? _____
- 53. If \triangle ABC is reflected over the line x = 2, followed by a reflection over the line x = -2, the new \triangle will have coordinates $A' = _$ _____ $B' = _$ ____ and $C' = _$ ____. Describe the magnitude and direction of the transformation.
- 54. If $\triangle ABC$ is rotated 180° around the origin, followed by a reflection over the y axis, the final triangle can be considered a single transformation of the first. Describe the single transformation.

Livingston High School **For Questions 55 – 70: Determine if the following statement is TRUE or FALSE.**

- 55. $RQ \ge RT$
- 56. QT = RT
- $57. \qquad m \angle 4 > m \angle 2$
- 58. $m \angle 1 = 2 (m \angle 3)$
- $59. \qquad m \angle 2 + m \angle 3 + m \angle 5 \quad = \quad m \angle 1 + \ m \angle 4$
- $60. \qquad m \angle 1 \ > \ m \angle 5$
- 61. $m \angle 3 < m \angle 4$
- 62. altitude from Q to \overline{RT} > median from T to \overline{QR}

For questions 55 - 62 QT is the base of isosceles \triangle QRT, and QT \neq QR

- $63. \qquad AD = CD$
- $64. \qquad m \angle A < m \angle C$
- $65. \qquad AB + BC > AC$
- 66. BD = $\frac{1}{2}$ (AC)
- 67. $m \angle A = m \angle 2$
- 68. 2(AB) < 3(DE)
- 69. Area of $\triangle ADB < Area of \triangle BDC$
- 70. $AB \bullet BC = AC \bullet BD$

71. If the lines at right are parallel, Find the value of x. _____

- 72. Let $\mathbb{R}(-2, 1)$, $\mathbb{Q}(13, 13)$, $\mathbb{W}(6, 5)$, $\mathbb{P}(1, k)$. Find the value of k so that $\overline{WP} \parallel \overline{RQ}$.
- 73. Find the coordinates of the points M, L, and R if it is given that: A (-1, 2) is the midpoint of ML, B (3, 2) is the midpoint of MR, and C (1, -2) is the midpoint of RL.

L = _____ R = ____ M = ____

- 74. The bisectors of the same side interior angles will be ______ if the lines are parallel.
- 75. Given any acute angle, what is the numerical difference between the supplement of the angle and the complement of the angle ?
- 76. Given any acute angle, what is the difference between its supplement and twice its complement ?

For Questions 77 – 88: State which lines, if any, are parallel based on the information given in each problem.

- 78. $\angle 3 \cong \angle 12$ 79. $\angle 7 \cong \angle 12$ 80. $\angle 10 \cong \angle 2$ 81. $\angle 6 \cong \angle 11$ 82. $m \angle 7 + m \angle 8 + m \angle 12 = 180^{\circ}$ 83. $m \angle 2 + m \angle 10 = 180^{\circ}$
 - 84. $\angle 1 \cong \angle 8$

77.

 $\angle 2 \cong \angle 4$

- 85. $\angle 3$ and $\angle 4$ are supplementary
- 86. $\angle 10 \cong \angle 12$
- 87. $m \angle 1 + m \angle 10 + m \angle 11 = 180^{\circ}$
- 88. $\angle 3 \cong \angle 9 \cong \angle 10$

- 89. The exterior base \angle of an isosceles triangle measures a, and the exterior vertex angle of the triangle measures b. Express a in terms of b.
- 90. What is the radius of a circle that can be inscribed in a triangle whose sides are 10", 24", and 26"?
- 91. What is the radius of the circumscribed circle around the triangle described in question #90?
- 92. Find the lengths of all three medians for the question above.
- 93. What is the length of the shortest altitude for the triangle described above ?

Use th for qu	te diagram at right testions 94–99.							
94.	Reflect P over the X axis to P ^{$^{\circ}$} . Coordinates of P ^{$^{\circ}$} =							
95.	Reflect Q over the X axis to Q ^{2} . Coordinates of Q ^{2} =							
96.	What is the length of $PQ' = $ What is the length of $QP' = $							
97.	What are the coordinates of point A, where QP' intersects the X axis ?							
	A =							
98.	Find the lengths: PA = and QA =							
99.	What is the shortest distance from point P to point Q if the path has to hit the X axis first ? At what point will it hit the X axis ?							

100. What is the midpoint of line segment of QP?

End of the Short Answer Review

Geometry Honors ISLO Exam Review – Part 1 - Answer Key

1. C (7, -2)	D (4.5, -0.5)	2. 54°, 126°;	36°	3. 26	4. 41°	5. ∠	$\angle 3 \& \angle 5 \text{ or } \angle 2 \& \angle 4;$		
≅									
6. 68°, 56°, 56	° 7. 12	4° 8. a.	32 b. 21	c. 51.7	9. SAS		10. AAS or HL		
11. AAS	12. N	Jone 13. 2	∠PNQ≅∠	TNS	14. PS	$\cong \overline{TQ}$	15. yes, AAS		
16. 12	17. 6	$\sqrt{17}$ in	18. 144 in^2		19. 24, 36, 72		20. 16		
21. A (6, 24)	B (12, 0)	C(0,0) R(3	,12) 7	F(6,0) S(9,	12) M (6,8)	221/4		
23. $y = \frac{1}{4}x +$	$\frac{39}{4}$ 24. 3	$\sqrt{5}$	25. (0	, 3.5)	26. (1,	4)	27. (4, 5.5)		
28. Sometimes	29. A	lways	30. Alv	vays	31. Son	netimes	32. Sometimes		
33. Sometimes	34. Se	metimes 35. Sor		netimes	36. Always		36(Again). True		
37. CONVERS	SE: If $2 \cong$ angle	es are formed, t	hen an an	gle was bisect	ed.				
INVERSE:	If an angle w	as not bisected	, then $2\cong$	angles weren't	formed.				
CONTRAP	OSITIVE: If 2	2 ≅ angles aren'	t formed,	then an angle	wasn't bis	ected.			
38. If I go to the	8. If I go to the store, then I will spend money.					39. Joan doesn't drive a car.			
40. ½	411	42. $\sqrt{29}$; (0), 0)	43. 4		44. $\frac{12\sqrt{5}}{5}$	45. (-2, 2		
)									
46. $\frac{2\sqrt{17}}{3}$	47. A'(2,5)	B'(2,-1)	C'(-2, 1)	48. A	A'(5, -2)	B'(-1, -2)	C'(1,2)		
49. A'(5, 2)	B. A'(5,2) B'(-1,2) C'(1,-2)		50. glide reflection			51. 104° ccw rotation around			
origin									
52. translation	53. A	A'(-10,5) B'(-1	0, -1) C'((-6, 1); Transl	ated 8 un	its left 54.	reflection over the x-		
axis									
55. True	56. False	57. False	58. Tr	ue 59. F	alse	60. False	61. True		
62. False	63. True	64. False	65. Tr	ue 66. T	rue	67. True	68. False		
69. False	70. False	71. 52°	72. k =	= 1 73. L	4 (-3, -2)	R (5, -2)	M (1,6)		
74. ⊥	75. 90°	76. the same	e as the or	iginal angle		77. j k	78. j k		
79. none	80. none	81. none	82. l	m 83. l	m	84. <i>l</i> <i>m</i>	85. l m		
86. none	87. l m	88. j k an	dl∥m	89. a	$= 180 - \frac{1}{2}$	2b	90. 4		
91. 13	92. 13, $2\sqrt{61}$,√ <u>601</u>	93. $\frac{120}{13}$	94. (4, -4)	95. (-5,-3)			
96. $\sqrt{130}$, $\sqrt{13}$	0 97. A	Approximately (98. √ 41 , 5 ε	approx.	99. √ <u>130</u> , a	pproximately(-1,0)			